Engines, Rockets

Why the Falcon Heavy Makes Good Business Sense

This week, Space-X had a test launch of the Falcon Heavy, the largest rocket ever launched besides the Saturn-5. It was a great success, putting a Tesla Roadster into trans-Martian orbit. Space-X has taken a fantastic first step. If you have not seen the launch, you should definitely watch it – it is fantastic.

fh-staticfire
Falcon Heavy at liftoff (Elon Musk via SpaceNews).

While the Falcon Heavy is very cool and a great achievement, it is also a good business investment.  There are two reasons for this.

The first reason is that the Falcon Heavy is a good business decision is that the Falcon Heavy is simply three Falcon-9s strapped together. Other rocket companies have different lines for different weight classes.  For example, Orbital/ATK has the Pegasus rocket, which last launched the eight CYGNSS satellites.  The next mission that will use the Pegasus is ICON, which will launch later this year.  That is about 1.5 years between launches.  The Pegasus launches off of an airplane, which is super cool.  The next size up from the Pegasus that Orbital makes is the Minotaur-C, which is capable of of carrying about four times as much mass to orbit as the Pegasus.  The Minotaur-C uses some of the same components as the Pegasus, but they are pretty different.  This means that Orbital needs to keep up two lines of production, which is quite difficult and costly.

The Falcon-9 uses 9 Merlin 1D engines in the first stage and 1 Merlin 1D (Vacuum) engine in the second stage. So, it uses essentially 10 of the same engines.  The Falcon Heavy uses 3 Falcon-9 first stages for a total of 27 Merlin engines in the first stage, with a second stage that is identical to the Falcon-9 second stage, for a total of 28 Merlin engines.  The engines and first stages can be used as Falcon-9s or Falcon Heavies.  This makes the production costs much lower, since they don’t have to maintain different manufacturing lines for different rockets.

What would be super awesome is if they could have a rocket that used one Merlin engine (a Falcon-1 rocket, which used to exist) that could compete with the super small rockets, like the Pegasus or the Electron (as discussed in a previous post).  But, Space-X made a choice that their smallest rocket would be the Falcon-9, which was a good decision, since the Falcon-1 could not really be expanded, like the Falcon-9 to the Falcon Heavy.

(Side Note: The Falcon Heavy is a relatively small rocket compared to the BFR that Space-X is planning for going to Mars.  There are plans for more, extremely large, rockets. The BFR is going to be a fundamentally different design than the Falcon Heavy, which is somewhat sad, since I just wrote a bunch of words above about how awesome it is that Space-X are combining the same rockets to get bigger rockets. I have no real idea how much development has gone into the BFR yet.  I will find out and get back to you!)

9m_BFR_vs_12m_ITS_vs_NG_vs_SLS
The future of rockets compared to the Saturn V. The Falcon Heavy is the biggest rocket available today, but it is very small compared to what is needed to go to the moon or Mars with humans. (https://en.wikipedia.org/wiki/BFR_(rocket))

The other thing that Space-X has done is to make the Falcon-9s reusable. The fact that they can fly back down and land makes them very valuable.  While the reusability of the rocket engines, and the number of times that they can be reused, is still questionable, it is quite certain that they will get there and the engines will be able to be used many times.

The other reusable space vehicle has been the Space Shuttle.  The problem with the shuttle was that it was extremely costly to reuse it – about $500,000,000 to launch the shuttle. (I will write a post on this soon!) The Space-X rockets are fundamentally different things.  They do not have a super complicated heat shield, or relatively complicated solid rocket boosters.

Interestingly, the primary reason that the Falcon-9 lands the way that it does, standing up using thrust, is that this is the way that it would have to land on Mars. Because Mars has such a weak atmosphere, it is very hard to land with parachutes or with wings, like the shuttle. Space-X therefore designed the Falcon-9 so that it could land vertically.  Not that there will be any Falcon-9s on Mars, but the vertical landings are great tests of the technology so that when rockets do land on Mars, they will have undergone significant real-world tests. That is in addition to making the rockets reusable, which drives the price down significantly.

In summary, Space-X is making really good business decisions in its Falcon-9 and Falcon Heavy lines: using the same engines and the same structures is really smart, and making the rockets reusable is genius.

Advertisements
Satellites

Two Reasons Why the Humanity Star is Not a Complete Waste of Time

If you have not seen this, you should look at this web page that describes The Humanity Star.  It is basically a nearly spherical object that was launched into space in January of 2018.  It has 65 reflective surfaces that will reflect sunlight while it is in orbit. The general idea is that whenever it is in the sun, it will be so bright in the sky that you can see it.

Normal satellites can be seen in orbit around the Earth from the ground.  What happens is that when it is dark on the ground, but still light at orbital altitudes (around 250 miles high and above), sunlight can reflect off the satellite and it can look like a star in the sky.  This happens just after sunset or just before sunrise.  If you are very patient and look up at the sky during these times (preferably from an outdoor hot tub), you can sometimes see objects that look like stars that are moving from south to north or north to south. To give you an idea, it should take them about 10 minutes to go from horizon to horizon.

The Humanity Star is so bright that it should be be visible during the day.  The web page talks about how this will be a beacon to draw humanity back together and to make them look to the stars.  I personally don’t think that a tiny star-like object in the sky will bring humanity back together unless the star-like object is getting bigger and bigger every day and has the potential to wipe out humanity.  Other people that I have talked to have a similar feeling, and so it seems like The Humanity Star really has no real value. Except it does. There are a few good reasons, some intended, and others maybe not.

Humanity-Star-2
The Humanity Star. It is not in orbit in this picture. It is sitting on the ground. (From the website).

The true purpose of The Humanity Star was really to test the Electron rocket by Rocket Lab. This was the first flight of the Electron.  While Space-X just launched the Falcon Heavy, Rocket Lab launched a small rocket that can take only 150-225 kilograms to orbit for an estimated price of $5M.  This is a huge deal because constellation missions would like to spread out satellites.  It is incredibly difficult to truly distribute a constellation of satellites from a single launch vehicle (rocket).  If you could buy 8 tiny rockets that could take one or two satellites to orbit for the price of one medium sized rocket that could take 8 satellites, it would allow you to distribute the satellites immediately.

When you test a rocket for the first time, the probability of failure is quite high (like, explosively high).  Some companies give a special deal to satellite companies to launch their satellite on a very risky rocket launch. If it blows up, then everyone loses, but they are not out a huge amount of money.  If it doesn’t blow up, everyone wins – the rocket is proven to work, and the satellite gets to orbit for cheap. Other companies just launch dummy payloads in order to prove that the rocket works.  If it works, then they have a proven rocket.  If it doesn’t, no one is harmed.  This path doesn’t make the company any money (if the rocket works), but also doesn’t make people really angry (if it doesn’t work).

The Humanity Star was a dummy payload for the first test launch of the Electron rocket.  This is similar to Space-X launching a Tesla on the Falcon Heavy (another dummy load with an actual dummy in the driver’s seat). Instead of just saying that it was a test load, Rocket Lab made a big deal about The Humanity Star instead of talking about their super cool and super small rocket.

The second interesting thing about The Humanity Star is that it can actually be used to do science, even though it has no power or sensors or anything. The Air Force has many dummy spheres like this in orbit. The reason for this is that all objects in low Earth orbit feel atmospheric drag.  Since the projected area of a nearly spherical object is known exactly and basically never changes (since it looks exactly the same from every angle) the only change in the drag force that the object feels is due to changes in the atmospheric density. Normal satellites are strange shapes and have lots of protrusions, like antennas and such.  If the orientation of the satellite changes, the drag changes. It is often extremely difficult to model this behavior accurately.  So, simple spheres are used and are tracked with radars from the ground.

The Humanity Star will allow us to more accurately track the thermospheric density since it is really big (about 1 meter across) and pretty light (about 8 kg).  Its area to mass ratio means that the drag that it feels will be pretty big, so it will reenter the atmosphere pretty quickly (less than a year). Because it feels such a large drag, the drag force will be easy to determine and any changes will be caused by only by changes in the thermospheric density.  This is the type of research that I do!

Another really minor thing about The Humanity Star is that because it can be visible from just before sunrise to just after sunset, including the whole day, it could be used for educational purposes.  You see, a satellite’s orbit can be determined just by tracking how it moves across the sky.  If you point a telescope at the satellite in the sky and mark down the direction that the telescope is pointed, and do this over and over again as the satellite moves across the sky, the math is relatively easy to do to determine the orbit (well, students do this in Junior-level Aerospace Engineering classes). This is a great real life example that students could use to put their education to use! In the daylight!

Hopefully this has convinced you that The Humanity Star is not a complete waste of time and money!